10 Must-Know Coding Algorithms

πŸš€ 10 Must-Know Coding Algorithms to Solve Real-World Problems & Crush Interviews! πŸ’»πŸ”₯

Algorithms are the secret sauce behind efficient software, optimized systems, and successful tech interviews. Mastering them helps you solve real-world challenges and stand out in coding interviews.

In this blog, we’ll break down 10 essential algorithms, their practical applications, and Python examplesβ€”plus how they optimize global problems and appear in interviews!

Competitive-Programming-1


πŸ” 1. Binary Search – Lightning-Fast Lookups

Real-Life Use Cases:

βœ… Searching in databases, dictionaries, and autocomplete systems.
βœ… Debugging (finding where a bug was introduced in version control).

Optimization Impact:

πŸ”Ή Reduces search time from O(n) β†’ O(log n).

Python Example:

def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1

arr = [1, 3, 5, 7, 9]
print(binary_search(arr, 5))  # Output: 2

Interview Question:

β€œFind the first and last occurrence of a target in a sorted array.”


πŸ›  2. Dijkstra’s Algorithm – Shortest Path Finder

Real-Life Use Cases:

βœ… Google Maps, Uber (fastest route calculation).
βœ… Network routing (optimizing internet traffic).

Optimization Impact:

πŸ”Ή Solves shortest-path in weighted graphs (O(E + V log V) with a heap).

Python Example:

import heapq

def dijkstra(graph, start):
    distances = {node: float('inf') for node in graph}
    distances[start] = 0
    heap = [(0, start)]
    
    while heap:
        dist, node = heapq.heappop(heap)
        if dist > distances[node]:
            continue
        for neighbor, weight in graph[node].items():
            new_dist = dist + weight
            if new_dist < distances[neighbor]:
                distances[neighbor] = new_dist
                heapq.heappush(heap, (new_dist, neighbor))
    return distances

graph = {
    'A': {'B': 1, 'C': 4},
    'B': {'A': 1, 'C': 2, 'D': 5},
    'C': {'A': 4, 'B': 2, 'D': 1},
    'D': {'B': 5, 'C': 1}
}
print(dijkstra(graph, 'A'))  # Output: {'A': 0, 'B': 1, 'C': 3, 'D': 4}

Interview Question:

β€œFind the cheapest flight route with at most K stops.”


πŸ”„ 3. Dynamic Programming – Optimizing Complex Problems

Real-Life Use Cases:

βœ… Stock trading (max profit with buy/sell constraints).
βœ… DNA sequence alignment (bioinformatics).

Optimization Impact:

πŸ”Ή Turns O(2ⁿ) β†’ O(nΒ²) (e.g., Fibonacci from exponential to linear).

Python Example (Fibonacci with Memoization):

def fib(n, memo={}):
    if n in memo: return memo[n]
    if n <= 2: return 1
    memo[n] = fib(n-1, memo) + fib(n-2, memo)
    return memo[n]

print(fib(50))  # Output: 12586269025

Interview Question:

β€œSolve the 0/1 Knapsack Problem.”


🌐 4. BFS & DFS – Graph Traversal Masters

Real-Life Use Cases:

βœ… Social networks (friend suggestions, detecting cycles).
βœ… Web crawling (Google Bot indexing pages).

Optimization Impact:

πŸ”Ή BFS (O(V+E)) β†’ Shortest path in unweighted graphs.
πŸ”Ή DFS (O(V+E)) β†’ Maze-solving, topological sorting.

Python Example (BFS):

from collections import deque

def bfs(graph, start):
    visited = set()
    queue = deque([start])
    visited.add(start)
    
    while queue:
        node = queue.popleft()
        print(node, end=" ")
        for neighbor in graph[node]:
            if neighbor not in visited:
                visited.add(neighbor)
                queue.append(neighbor)

graph = {'A': ['B', 'C'], 'B': ['D'], 'C': ['E'], 'D': [], 'E': []}
bfs(graph, 'A')  # Output: A B C D E

Interview Question:

β€œClone a connected undirected graph.”


🧩 5. Merge Sort – Efficient Sorting

Real-Life Use Cases:

βœ… Database sorting (external sorting of large datasets).
βœ… E-commerce (sorting products by price/rating).

Optimization Impact:

πŸ”Ή O(n log n) time (faster than Bubble Sort’s O(nΒ²)).

Python Example:

def merge_sort(arr):
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    left = merge_sort(arr[:mid])
    right = merge_sort(arr[mid:])
    return merge(left, right)

def merge(left, right):
    result = []
    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    result.extend(left[i:])
    result.extend(right[j:])
    return result

arr = [38, 27, 43, 3, 9, 82, 10]
print(merge_sort(arr))  # Output: [3, 9, 10, 27, 38, 43, 82]

Interview Question:

β€œSort a linked list in O(n log n) time.”


πŸ”— 6. Union-Find (Disjoint Set) – Managing Connected Components

Real-Life Use Cases:

βœ… Social networks (finding friend groups).
βœ… Kruskal’s MST algorithm (minimum spanning trees).

Optimization Impact:

πŸ”Ή Near-constant time for union & find operations (with path compression).

Python Example:

class UnionFind:
    def __init__(self, size):
        self.parent = list(range(size))
    
    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])  # Path compression
        return self.parent[x]
    
    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            self.parent[rootY] = rootX

uf = UnionFind(5)
uf.union(0, 1)
uf.union(2, 3)
print(uf.find(1) == uf.find(0))  # Output: True

Interview Question:

β€œCount the number of islands in a binary matrix.”


🎯 7. Kadane’s Algorithm – Maximum Subarray Sum

Real-Life Use Cases:

βœ… Stock trading (max profit in a time period).
βœ… Data analysis (finding trends in datasets).

Optimization Impact:

πŸ”Ή Solves in O(n) time (better than brute-force O(nΒ²)).

Python Example:

def kadane(arr):
    max_current = max_global = arr[0]
    for num in arr[1:]:
        max_current = max(num, max_current + num)
        if max_current > max_global:
            max_global = max_current
    return max_global

arr = [-2, 3, 2, -1, 4, -5]
print(kadane(arr))  # Output: 8 (from subarray [3, 2, -1, 4])

Interview Question:

β€œFind the maximum product subarray.”


πŸ”₯ 8. Quickselect – Efficient Kth Smallest/Largest Element

Real-Life Use Cases:

βœ… Order statistics (finding median in unsorted data).
βœ… Recommendation systems (finding top K items).

Optimization Impact:

πŸ”Ή O(n) average time (faster than sorting + indexing).

Python Example:

import random

def quickselect(arr, k):
    pivot = random.choice(arr)
    left = [x for x in arr if x < pivot]
    mid = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    
    if k <= len(left):
        return quickselect(left, k)
    elif k <= len(left) + len(mid):
        return pivot
    else:
        return quickselect(right, k - len(left) - len(mid))

arr = [3, 2, 1, 5, 6, 4]
print(quickselect(arr, 2))  # Output: 2 (2nd smallest)

Interview Question:

β€œFind the Kth largest element in an unsorted array.”


Real-Life Use Cases:

βœ… Autocomplete systems (Google Search, IDEs).
βœ… Spell checkers (dictionary lookups).

Optimization Impact:

πŸ”Ή O(L) search time (L = word length).

Python Example:

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end = False

class Trie:
    def __init__(self):
        self.root = TrieNode()
    
    def insert(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end = True
    
    def search(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                return False
            node = node.children[char]
        return node.is_end

trie = Trie()
trie.insert("apple")
print(trie.search("apple"))  # Output: True

Interview Question:

β€œDesign an autocomplete system.”


⏳ 10. Sliding Window – Optimized Subarray/Substring Problems

Real-Life Use Cases:

βœ… Network congestion control (packet rate limiting).
βœ… Stock analysis (maximum profit in a window).

Optimization Impact:

πŸ”Ή Reduces O(nΒ²) β†’ O(n) for subarray problems.

Python Example (Maximum Subarray of Size K):

def max_subarray(arr, k):
    max_sum = window_sum = sum(arr[:k])
    for i in range(k, len(arr)):
        window_sum += arr[i] - arr[i - k]
        max_sum = max(max_sum, window_sum)
    return max_sum

arr = [2, 1, 5, 1, 3, 2]
print(max_subarray(arr, 3))  # Output: 9 (from [5, 1, 3])

Interview Question:

β€œFind the longest substring with K distinct characters.”


πŸš€ Why These Algorithms Matter?

βœ… Solve real-world problems efficiently (finance, healthcare, AI).
βœ… Key to acing FAANG interviews (LeetCode & Codeforces favorites).
βœ… Make you a better problem-solver in any coding domain.


πŸ”₯ Pro Tips for Mastering Algorithms:

βœ” Practice daily on LeetCode & HackerRank.
βœ” Understand time/space complexity trade-offs.
βœ” Explain your approach before coding in interviews.


πŸ’¬ Which algorithm do you find most challenging? Drop a comment! πŸ‘‡

#Coding #Algorithms #TechInterview #Programming #Optimization #FAANG #DataStructures

© Lakhveer Singh Rajput - Blogs. All Rights Reserved.