10 Must-Know Coding Algorithms
π 10 Must-Know Coding Algorithms to Solve Real-World Problems & Crush Interviews! π»π₯
Algorithms are the secret sauce behind efficient software, optimized systems, and successful tech interviews. Mastering them helps you solve real-world challenges and stand out in coding interviews.
In this blog, weβll break down 10 essential algorithms, their practical applications, and Python examplesβplus how they optimize global problems and appear in interviews!
π 1. Binary Search β Lightning-Fast Lookups
Real-Life Use Cases:
β
Searching in databases, dictionaries, and autocomplete systems.
β
Debugging (finding where a bug was introduced in version control).
Optimization Impact:
πΉ Reduces search time from O(n) β O(log n).
Python Example:
def binary_search(arr, target):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
arr = [1, 3, 5, 7, 9]
print(binary_search(arr, 5)) # Output: 2
Interview Question:
βFind the first and last occurrence of a target in a sorted array.β
π 2. Dijkstraβs Algorithm β Shortest Path Finder
Real-Life Use Cases:
β
Google Maps, Uber (fastest route calculation).
β
Network routing (optimizing internet traffic).
Optimization Impact:
πΉ Solves shortest-path in weighted graphs (O(E + V log V) with a heap).
Python Example:
import heapq
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
heap = [(0, start)]
while heap:
dist, node = heapq.heappop(heap)
if dist > distances[node]:
continue
for neighbor, weight in graph[node].items():
new_dist = dist + weight
if new_dist < distances[neighbor]:
distances[neighbor] = new_dist
heapq.heappush(heap, (new_dist, neighbor))
return distances
graph = {
'A': {'B': 1, 'C': 4},
'B': {'A': 1, 'C': 2, 'D': 5},
'C': {'A': 4, 'B': 2, 'D': 1},
'D': {'B': 5, 'C': 1}
}
print(dijkstra(graph, 'A')) # Output: {'A': 0, 'B': 1, 'C': 3, 'D': 4}
Interview Question:
βFind the cheapest flight route with at most K stops.β
π 3. Dynamic Programming β Optimizing Complex Problems
Real-Life Use Cases:
β
Stock trading (max profit with buy/sell constraints).
β
DNA sequence alignment (bioinformatics).
Optimization Impact:
πΉ Turns O(2βΏ) β O(nΒ²) (e.g., Fibonacci from exponential to linear).
Python Example (Fibonacci with Memoization):
def fib(n, memo={}):
if n in memo: return memo[n]
if n <= 2: return 1
memo[n] = fib(n-1, memo) + fib(n-2, memo)
return memo[n]
print(fib(50)) # Output: 12586269025
Interview Question:
βSolve the 0/1 Knapsack Problem.β
π 4. BFS & DFS β Graph Traversal Masters
Real-Life Use Cases:
β
Social networks (friend suggestions, detecting cycles).
β
Web crawling (Google Bot indexing pages).
Optimization Impact:
πΉ BFS (O(V+E)) β Shortest path in unweighted graphs.
πΉ DFS (O(V+E)) β Maze-solving, topological sorting.
Python Example (BFS):
from collections import deque
def bfs(graph, start):
visited = set()
queue = deque([start])
visited.add(start)
while queue:
node = queue.popleft()
print(node, end=" ")
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
queue.append(neighbor)
graph = {'A': ['B', 'C'], 'B': ['D'], 'C': ['E'], 'D': [], 'E': []}
bfs(graph, 'A') # Output: A B C D E
Interview Question:
βClone a connected undirected graph.β
π§© 5. Merge Sort β Efficient Sorting
Real-Life Use Cases:
β
Database sorting (external sorting of large datasets).
β
E-commerce (sorting products by price/rating).
Optimization Impact:
πΉ O(n log n) time (faster than Bubble Sortβs O(nΒ²)).
Python Example:
def merge_sort(arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])
return merge(left, right)
def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result
arr = [38, 27, 43, 3, 9, 82, 10]
print(merge_sort(arr)) # Output: [3, 9, 10, 27, 38, 43, 82]
Interview Question:
βSort a linked list in O(n log n) time.β
π 6. Union-Find (Disjoint Set) β Managing Connected Components
Real-Life Use Cases:
β
Social networks (finding friend groups).
β
Kruskalβs MST algorithm (minimum spanning trees).
Optimization Impact:
πΉ Near-constant time for union & find operations (with path compression).
Python Example:
class UnionFind:
def __init__(self, size):
self.parent = list(range(size))
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x]) # Path compression
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX != rootY:
self.parent[rootY] = rootX
uf = UnionFind(5)
uf.union(0, 1)
uf.union(2, 3)
print(uf.find(1) == uf.find(0)) # Output: True
Interview Question:
βCount the number of islands in a binary matrix.β
π― 7. Kadaneβs Algorithm β Maximum Subarray Sum
Real-Life Use Cases:
β
Stock trading (max profit in a time period).
β
Data analysis (finding trends in datasets).
Optimization Impact:
πΉ Solves in O(n) time (better than brute-force O(nΒ²)).
Python Example:
def kadane(arr):
max_current = max_global = arr[0]
for num in arr[1:]:
max_current = max(num, max_current + num)
if max_current > max_global:
max_global = max_current
return max_global
arr = [-2, 3, 2, -1, 4, -5]
print(kadane(arr)) # Output: 8 (from subarray [3, 2, -1, 4])
Interview Question:
βFind the maximum product subarray.β
π₯ 8. Quickselect β Efficient Kth Smallest/Largest Element
Real-Life Use Cases:
β
Order statistics (finding median in unsorted data).
β
Recommendation systems (finding top K items).
Optimization Impact:
πΉ O(n) average time (faster than sorting + indexing).
Python Example:
import random
def quickselect(arr, k):
pivot = random.choice(arr)
left = [x for x in arr if x < pivot]
mid = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
if k <= len(left):
return quickselect(left, k)
elif k <= len(left) + len(mid):
return pivot
else:
return quickselect(right, k - len(left) - len(mid))
arr = [3, 2, 1, 5, 6, 4]
print(quickselect(arr, 2)) # Output: 2 (2nd smallest)
Interview Question:
βFind the Kth largest element in an unsorted array.β
π 9. Trie β Efficient String Storage & Search
Real-Life Use Cases:
β
Autocomplete systems (Google Search, IDEs).
β
Spell checkers (dictionary lookups).
Optimization Impact:
πΉ O(L) search time (L = word length).
Python Example:
class TrieNode:
def __init__(self):
self.children = {}
self.is_end = False
class Trie:
def __init__(self):
self.root = TrieNode()
def insert(self, word):
node = self.root
for char in word:
if char not in node.children:
node.children[char] = TrieNode()
node = node.children[char]
node.is_end = True
def search(self, word):
node = self.root
for char in word:
if char not in node.children:
return False
node = node.children[char]
return node.is_end
trie = Trie()
trie.insert("apple")
print(trie.search("apple")) # Output: True
Interview Question:
βDesign an autocomplete system.β
β³ 10. Sliding Window β Optimized Subarray/Substring Problems
Real-Life Use Cases:
β
Network congestion control (packet rate limiting).
β
Stock analysis (maximum profit in a window).
Optimization Impact:
πΉ Reduces O(nΒ²) β O(n) for subarray problems.
Python Example (Maximum Subarray of Size K):
def max_subarray(arr, k):
max_sum = window_sum = sum(arr[:k])
for i in range(k, len(arr)):
window_sum += arr[i] - arr[i - k]
max_sum = max(max_sum, window_sum)
return max_sum
arr = [2, 1, 5, 1, 3, 2]
print(max_subarray(arr, 3)) # Output: 9 (from [5, 1, 3])
Interview Question:
βFind the longest substring with K distinct characters.β
π Why These Algorithms Matter?
β
Solve real-world problems efficiently (finance, healthcare, AI).
β
Key to acing FAANG interviews (LeetCode & Codeforces favorites).
β
Make you a better problem-solver in any coding domain.
π₯ Pro Tips for Mastering Algorithms:
β Practice daily on LeetCode & HackerRank.
β Understand time/space complexity trade-offs.
β Explain your approach before coding in interviews.
π¬ Which algorithm do you find most challenging? Drop a comment! π
#Coding #Algorithms #TechInterview #Programming #Optimization #FAANG #DataStructures
© Lakhveer Singh Rajput - Blogs. All Rights Reserved.